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Families of Discrete RVs
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Families of Continuous RVs
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Bernoulli Trial
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 A Bernoulli trial  involves performing an experiment once 
and noting whether a particular event A occurs. 
 The outcome of the Bernoulli trial is said to be
 a “success” if A occurs and

 a “failure” otherwise.

 Success probability = p

 We may view the outcome of a single Bernoulli trial as the 
outcome of a toss of an unfair coin for which the probability 
of heads (success) is p = P(A) and the probability of tails 
(failure) is 1−p.



Bernoulli Trials
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 Repeat a Bernoulli trial multiple times

 Assumptions:
 The trials are independent. (The outcome from one trial has no 

effect on the outcome to be obtained from any other trials.)
 The probability of a success p in each trial is constant.

 An outcome of the complete experiment is a sequence of 
successes and failures which can be denoted by a sequence 
of ones and zeroes.



Recall: Sequence of Coin Tosses

6

 Use 1 to represent Heads; 0 to represent Tails

 rand(1,120) < 0.5
 randi([0 1],1,120)



Bernoulli Trials
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The number of 1s in n trials is a 
binomial random variable with 
parameter (n,p)

The number of trials 
until the next 1 is a 
geometric1 random 
variable.

The number of 0 
until the next 1 is a 
geometric0 random 
variable.

In the limit, as
n  and p  0
while  np = ,

The number of 1s is a Poisson 
random variable with parameter 
= np.



Poisson Process

8

 We start by picturing a Poisson Process as a random 
arrangement of “marks” (denoted by × or ) on the time 
axis. 

 These marks usually indicate the arrival times or occurrences 
of event/phenomenon of interest.

 In the language of “queueing theory,” the marks denote arrival 
times.

Time



Poisson Process: Examples
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 Sequence of times at which 
lightning strikes occur or mail 
carriers get bitten within some 
region

 Emission of particles from a 
radioactive source

 Occurrence of
 serious earthquakes
 traffic accidents
 power outages
in a certain area.

 Arrivals of
 telephone calls at a switchboard 

or at an automatic phone-
switching system

 urgent calls to an emergency 
center

 (filed) claims at an insurance 
company

 incoming spikes (action potential) 
to a neuron in human brain

 Page view requests to a website



Homogeneous Poisson Process
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 We focus on one kind of Poisson process called homogeneous 
Poisson process. 
 From now on, when we say “Poisson process”, what we mean is 

“homogeneous Poisson process”.

 The first property that you should remember for this process 
is that there is only one parameter for Poisson process.
 This parameter is the rate or intensity of arrivals (the average 

number of arrivals per unit time.) 
 We use  to denote this parameter.

 How can , which is the only parameter, controls Poisson 
process? 
 The key idea is that the Poisson process is as 

random/unstructured as a process can be.



Poisson Process?
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One of these is a realization of a two-dimensional Poisson point 
process and the other contains correlations between the points. 
One therefore has a real pattern to it, and one is a realization of 
a completely unstructured random process.



Poisson Process
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All the structure that is 
visually apparent is 
imposed by our own 
sensory apparatus, which 
has evolved to be so 
good at discerning 
patterns that it finds 
them when they’re not 
even there!



Poisson Process: Small Slot Analysis
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(discrete time approximation)

Time

1 2 3

N1 = 1 N2 = 2 N3 = 1

W1 W2 W3 W4

Time

In the limit, there is at most one arrival in any slot. The numbers of arrivals on the slots are 
i.i.d. Bernoulli random variables with probability p1 of exactly one arrivals =  where  is the 
width of individual slot.

The total number of arrivals on n slots is a 
binomial random variable with parameter 
(n,p1)

D1
The number of slots between adjacent 
arrivals is a geometric random variable.

In the limit, as the slot length gets smaller, geometric exponential
binomial Poisson



Poisson Process
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Time

1 2 3

N1 = 1 N2 = 2 N3 = 1

The number of arrivals N1, N2 and N3 during non-overlapping time intervals 
are independent Poisson random variables with mean =   the length of the 
corresponding interval.

The lengths of time between adjacent arrivals W1, W2, W3 … are i.i.d. 
exponential random variables with mean 1/.

W1 W2 W3 W4
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Entropy
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 Quantify/measure
 amount of randomness (uncertainty, ambiguity) the RV has
 The number of bits (in average) that are needed to describe a 

realization of the random variable (provided that optimal 
compression is used).

 Convention: .
 Reason: 

 In MATLAB, first construct a row vector pX for the pmf of 
X. Then, find -pX*((log2(pX))').

       2 2log logX X X
x

H X p x p x p X      

0
lim log 0
x

x x




>> syms x; limit(x*log(x),x,0)

ans =

0



Differential Entropy
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 The formula discussed earlier is for discrete RV.

 For continuous RV, we consider the differential entropy:

       2 2log logX X Xh X f X f x f x dx      
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An interesting number
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 Here is an interesting number:

0.814723686393179

 This is the first number produced by the MATLAB random 
number generator with its default settings. 

 Start up a fresh MATLAB, set format long, type 
rand, and it’s the number you get.
 Verified in MATLAB 2013a

It may seem perverse to use a computer, that most precise and deterministic of
all machines conceived by the human mind, to produce “random” numbers. More
than perverse, it may seem to be a conceptual impossibility. Any program, after all,
will produce output that is entirely predictable, hence not truly “random.”

[Numerical Recipes, Ch 7]



Pseudorandom Number
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 Random numbers were originally either manually or mechanically 
generated, by using such techniques as spinning wheels, or dice rolling, 
or card shuffling. 

 The modern approach is to use a computer to successively generate 
pseudorandom numbers.
 Although they are deterministically generated, they approximate 

independent uniform (0, 1) random variables.
 So, “random” numbers in MATLAB are not unpredictable. They are 

generated by a deterministic algorithm.
 The algorithm is designed to be sufficiently complicated so that its output appears to 

be random to someone who does not know the algorithm, and can pass various 
statistical tests of randomness.

 Our assumption
 Assume that we have a good pseudorandom number generators.
 Example: the rand command in MATLAB.



rng

21

 The sequence of numbers produced by rand is determined 
by the internal settings of the uniform random number 
generator that underlies rand, randi,and randn. 

 You can control that shared random number generator using 
rng.
 This can be useful for controlling the repeatability of your 

results.

 http://www.mathworks.com/support/2013b/matlab/8.2/
demos/controlling-random-number-generation.html
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 Multiplicative (Linear) Congruential Generator (MCG)
 One of the most common approaches
 Also known as  
 prime modulus multiplicative  linear congruential generator 

(PMMLCG)
 Lehmer generator (because it is invented by Lehmer.)

 Start with the seed: 
 Recursion: 
 Normalization:  
 Multiplier a and modulus m are some chosen positive 

integers.
 m should be chosen to be a large prime number.

Multiplicative Congruential Generator 
(MCG)



Example
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 a = 3, m = 7, x0 = 1.

x ax z

1
3
2
6
4
5
1
3
2
6

3
9
6
18
12
15
3
9
6
18

0.1429
0.4286
0.2857
0.8571
0.5714
0.7143
0.1429
0.4286
0.2857
0.8571



Example
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 a = 3, m = 7, x0 = 2.

x ax z

2
6
4
5
1
3
2
6
4
5

6
18
12
15
3
9
6
18
12
15

0.2857
0.8571
0.5714
0.7143
0.1429
0.4286
0.2857
0.8571
0.5714
0.7143



“Minimal Standard Generator”
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 m = 231 − 1 = 2147483647 and a = 75 = 16807

 Recommended in a 1988 paper by Park and Miller
 S. K. Park and K. W. Miller, Random number generators: Good ones are 

hard to find, Communications of the ACM, 31 (1988), pp. 1192–
1201.

 Used in early (version 4) implementations of MATLAB. 
 In 1995, version 5 of MATLAB introduced a completely different 

kind of random number generator based on the work of George 
Marsaglia.

 In 2007, version 7.4 of MATLAB uses an algorithm known as the 
MersenneTwister, developed by M. Matsumoto and T. 
Nishimura.


